함수란
함수는 영어로 'function' 이다.
"y는 x의 함수이다." 라는 말은 영어로 "y is function of x"라고 하는데, 이 말을 줄여서 y=f(x)라고 표현한다.
y가 x의 함수라는 명제가 참이 되려면, x값에 따라 y값이 한 가지로 정해져야 한다.
위 공식은 함수는 아니다. 예를 들어, x = 1 을 대입해보면 y제곱의 값은 4가 된다.
이러한 경우 y는 -2 또는 2 두 가지의 값을 가질 수 있다.
y가 한 가지 값이 아니기 때문에 함수라고 지칭할 수 없게 된다.
y가 x에 의해 한 가지로 정해질 때 "y는 x의 함수이다." 라고 말할 수 있으며 y=f(x)로 나타낸다.
y = f(x)
1차 함수 그래프
1차 함수는 y = ax 방정식과 같다. 1차 함수 그래프를 그리는 방법은 간단하다.
x=2, y=2 인 경우 x축과 y축의 접점이 되는 곳을 '0' 으로 기준점을 둔다. 그리고 한 칸당 숫자 1이라고 가정하고 x축 오른쪽 2칸, y축 위로 2칸에 각각 점을 찍은 후 두 점을 연결하면 아래와 같이 일직선의 그래프가 그려진다.
2차 함수 그래프
2차 함수는 y = ax^2 로 표현한다. 2차 함수 그래프를 그리는 방법에 대해서, 절대값 (|a|) 이 커지면 그래프의 폭이 좁아지는 등의 내용은 외워두면 그래프 그리는 것이 간단해지기는 한다.
꼭지점은 아래의 공식에서 (p, q)의 값이다. 이 부분은 그래프를 그려보면 자연스럽게 알게 된다.
y = m(x-p)² + q
우선 가장 간단하게 그래프를 그리는 방법은 아래의 y에 대한 함수로 예시를 든다.
꼭지점은 (1, 4)이다. 그러면 그래프에 x축의 +1, y축의 +4인 좌표에 점을 찍고, 꼭지점의 x축을 기준으로 x값이 꼭지점보다 작은 값과 큰 값에 대해 임의의 값을 넣어 y의 값을 도출시킨 후 두 좌표를 찍는다. 그리고 점을 찍은 세 좌표를 포물선 형식으로 그리는 것이다.
꼭지점의 x값이 1이므로 임의의 값은 1에서의 -2, +2로 한다. (x = -1, x = 3)
우선 x = -1 일 때 y의 값은 12이다. (-1, 12) 그리고 x = 3일 때 y의 값 또한 12가 된다. 그러면 세 점을 찍은 후 꼭지점을 기준으로 두 좌표를 연결하면 포물선 형태의 그래프가 그려진다.
2차 함수는 이렇게 간단하게 그려볼 수 있다.
삼각함수 그래프
다음에 적어야징
지수함수 그래프
다음에 ㅎㅎ
로그함수(자연로그) 그래프
오랜만에 함수를 보니 꽤나 재밌는데 공식을 다시 기억하는 것 보다 어려운건 아는 내용을 최대한 쉽게 정리해보는 것이다..